Spatial Analysis

University of Maryland Libraries GIS and Spatial Data Center

> Julia Bell, GIS Specialist jbell129@umd.edu

Dr. Kelley O'Neal, GIS Scientist kelleyo@umd.edu

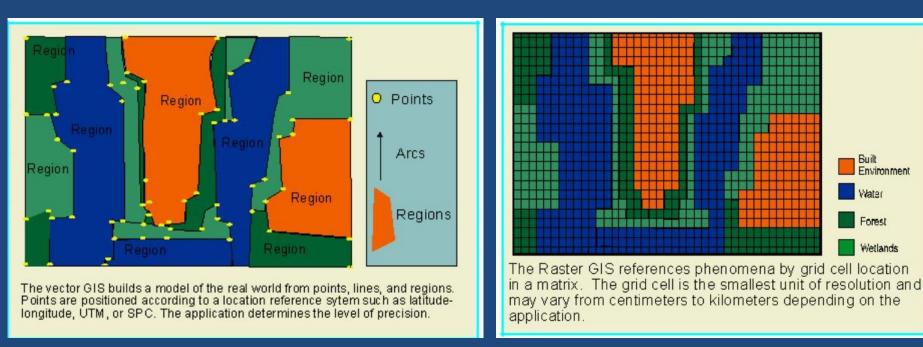
GIS Services in the Libraries

- Workshops 10 offerings available
 - Geospatial tools in R coming soon
- 1:1 consulting, collaboration
- Customized guest lectures/lab exercises
- Geospatial Researcher in Residence Program
- GIS lab in 4120 open for use during Library hours
- Access to free online tutorials and software trials
- See www.lib.umd.edu/gis for more information

Add'l Research Services

- Research Commons services:
- General research assistance
 - Proposals, ORAA requirements, presentations, etc.
- Data management
- Statistical consulting
- 3D scanning and printing; video editing
- Funding for open access publishing
- See www.lib.umd.edu/rc for more information

Workshop Outline

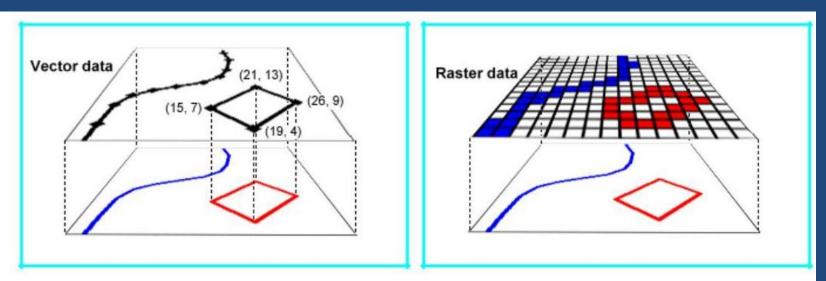

- 1. Presentation
- 2. Exercises
 - 1. Creating shapefiles
 - 2. Five Common ArcToolbox Tools
 - 3. Spatial Analysis with raster data
- 3. Questions and concerns?

DATA TYPES

What do you think are some differences between the two maps?

How about the difference between these maps?

You have just identified the differences between Vector and Raster data types! Let's look at them in more detail.


Data Types

Vector

Uses geometric objects (points, lines and polygons) to represent real features on the earth's surface such as light poles, roads and buildings. Ideal for discrete themes with definite boundaries.

Raster

Is composed of a continuous grid of cells that represent a portion of the earth's surface. Ideal for continuous themes where there is lots of change.

When to use Vector or Raster Data

What would you use for...

• Determining where to put new hospitals?

What would use for..

• Determining the elevation of land around the Chesapeake Bay?

Remember: either can be used, but one or the other will be better suited to certain kinds of data.

Data Types (Layers)

• Raster/Grid

DEM Digital Elevation Model

Image (raster) where the pixel values represent the ground elevation above sea level

DTM Digital Terrain Model

Image (raster) a DTM is a DEM that has been altered by elements such as break lines and observations to correct for artifacts by using photogrammetrically derived line work introduced into a DEM surface.

DSM Digital Surface Model

Image (raster) where the pixel values represent the elevations above sea level of the ground and all features on it. For example if there are buildings in the area, the DSM will include those building in the elevation values

Data Types (Layers)

• Vector

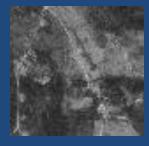
- Boundaries
- Features
- Geology
- Hydrology
- Demographic

Vector Data Review

point

line

polygon


attribute table

	HD Shape*	HAME	STATE_NAME	STATE_FIPS	CNTY_FIPS	FIPS	AREA	POP1990	POP1999	POP90_SOMI	HOUSEHOLDS	MALES	FEMAL
_	B Polygon	Lake of the Woods	Minnesota	27	077	27077	1784.0634	4076	4597	2	1576		20
	1 Polygon	Ferry	Washington	53	019	53019	2280.2319	6295	7150	3	2247	3280	3
	2 Polygon	Stevens	Washington	53	065	53065	2529.9794	30948	39965	12	11241	15454	15
	3 Polygon	Okanogan	Washington	53	047	53047	5306.18	33350	38596	6	12654		16
	4 Polygon	Pend Oreille	Washington	53	051	53051	1445.0286	8915	11788	6	3395	4426	4
	5 Polygon	Boundary	idaho	16	021	16021	1279.2987	8332	9840	7	2857	4252	4
	6 Polygon	Lincoln	Montana	30	053	30053	3746.0908	17481	18691	5	6668	8777	8
	7 Polygon	Flathead	Montana	30	029	30029	5232.0306	59218	72458	11	22834	29316	29
	8 Polygon	Glacier	Montana	30	035	30035	3124.4572	12121	12524	4	3816	5985	6
	9 Polygon	Toole	Montana	30	101	30101	1943.2598	5046	4653	3	1922	2486	2
	10 Polygon	Liberty	Montena	30	051	30051	1485.9458	2295	2332	2	788	1120	1
	11 Polygon	HI	Montana	30	041	30041	2917.3611	17654	17299	6	6426		8
	12 Polygon	Sheridan	Montana	30	091	30091	1686.5827	4732	4228	3	1899	2332	2
	13 Polygon	Divide	North Dakota	38	023	38023	1279.9633	2899	2305	2	1193	1447	1
	14 Polygon	Burke	North Dakota	38	013	38013	1121.417	3002	2194	3	1252		1
	15 Polygon	Renville	North Dakota	38	075	38075	883.772	3160	2779	4	1209	1560	1
	16 Polygon	Bottineau	North Dakota	38	009	38009	1710.0681	8011	7113	5	3105	4030	3
	17 Polygon	Rolette	North Dakota	38	079	38079	943.6554	12772	14336	14	4150	6262	6
	18 Polygon	Towner	North Dakota	38	095	38095	1051.6146	3627	2950	3	1433	1817	1
	19 Polygon	Cavalier	North Dakota	38	019	38019	1503.6905	6064	4896	4	2375	3032	3
	20 Polygon	Pembina	North Dakota	38	067	38067	1111.7749	9238	8375	8	3555	4577	4
	21 Polygon	Kittson	Minnesota	27	069	27069	1095.0149	5767	5279	5	2274	2833	2
	22 Polygon	Roseau	Minnesota	27	135	27135	1670.997	15026	16122	9	5415	7695	7
	23 Polygon	Blaine	Montana	30	005	30005	4226.2541	6728	7174	2	2379	3358	3
	24 Polygon	Phillips	Montena	30	071	30071	5197.3383	5163	4744	1	1931	2537	2
	25 Polygon	Valley	Montana	30	105	30105	5055.5539	8239	8136	2	3268	4110	4
	26 Polygon	Daniels	Montana	30	019	30019	1421.8024	2266	1959	2	919	1115	1
	27 Polygon	Whatcom	Washington	53	073	53073	2170.2019	127780	159393	59	48543	62848	64
	28 Polygon	Bonner	Idaho	16	017	16017	1902.6247	26622	35901	14	10269	13231	13
	29 Polygon	Ward	North Dakota	38	101	38101	2043.8348	57921	58560	28	21485	28824	29
	30 Polygon	Koochiching	Minnesota	27	071	27071	3141.0325	16299	15420	5	6025	8440	7
	31 Polygon	Skagit	Washington	53	057	53057	1765.1474	79555	101320	45	30573	39205	40
	32 Polygon	Williams	North Dakota	38	105	38105	2175.6903	21129	20025	10	8041	10386	10
	33 Polygon	McHenry	North Dakota	38	049	38049	1874.8388	6528	6024	3	2551	3309	3
	34 Polygon	St. Louis	Minnesota	27	137	27137	6750.4944	198213	192958	29	78901	96435	101
	35 Polygon	San Juan	Washington	53	055	53055	55.9182	10035	12738	179	4392	4967	6
	36 Polygon	Roosevelt	Montana	30	085	30085	2395.1857	10999	10936	5	3694	5374	6
	37 Polygon	Mountrial	North Dakota	38	061	38061	1944.771	7021	6590	4	2587	3469	3
	38 Polygon	Marshall	Minnesota	27	089	27089	1819.1567	10993	10190	6	4194	5566	6

Raster Data Review

Layer Properties

attribute table (or not)

raster properties

Property	Value	
Raster Information		
Columns and Rows	1082, 884	
Number of Bands	1	-
Cellsize (X, Y)	0.00027777778, 0.00027777778	
Uncompressed Size	3.65 MB	
Format	GRID	
Source Type	continuous	
Pixel Type	floating point	
Pixel Depth	32 Bit	

Analysis in GIS

• With vector data, the GIS uses values from fields in the attribute table

⊿ OBJECTID	SHAPE	Name of Building	Size of Building	Operational Hours	Acc
1	Polygon	Gym	1768.992398	8:30am-5:00pm	Em
2	Polygon	Gym	1043.515552	8:30am-5:00pm	Em
3	Polygon	J	3834.247963	8:30am-5:00pm	Em
4	Polygon	OA	14550.305355	8:30am-5:00pm	Em
5	Polygon	G	11507.921772	8:30am-5:00pm	Em
6	Polygon	S	2690.197171	8:30am-5:00pm	Em
7	Polygon	L	11246.731494	8:30am-5:00pm	Em
8	Polygon	E	10625.150848	8:30am-5:00pm	Em
9	Polygon	F	4913.179712	8:30am-5:00pm	Em
10	Polygon	0	25929.942586	8:30am-5:00pm	Em
11	Delverer	7	2240 606440	0.20 E.00	E

• With raster data, the GIS uses values from individual cells, or performs calculations based on zones and/or regions.

1	1	2	3
1	4	2	1
3	2	1	2
3	1	1	4

More on Raster Data

- Two types of raster data:
 - Thematic
 - A measured quantity or a classification
 - Ex: 5=elevation in feet
 - Ex: 5=water; 3=forest
 - Image
 - Reflected or emitted light
 - Ex: Pixel scale from 0 to 255 where 0 is black and 255 is white

5	5	3
5	5	3
5	3	3

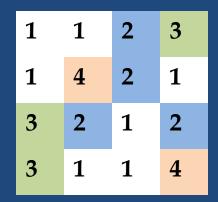
0	50	229
50	125	73
123	86	140

Raster Datasets

- Usually represent a single theme (elevation, land use, etc.) – so you need several to show an area
- Are made up of **individual cells** cells either have a value or have no data

Raster Datasets – Cells

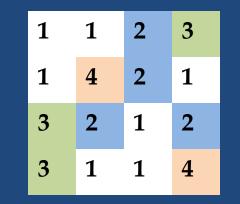
• Cells can be any size, but every cell in the dataset is the same size.


• The smaller the cell size, the greater the resolution.

• Cells are arranged in rows and columns, so each one has a specific address.

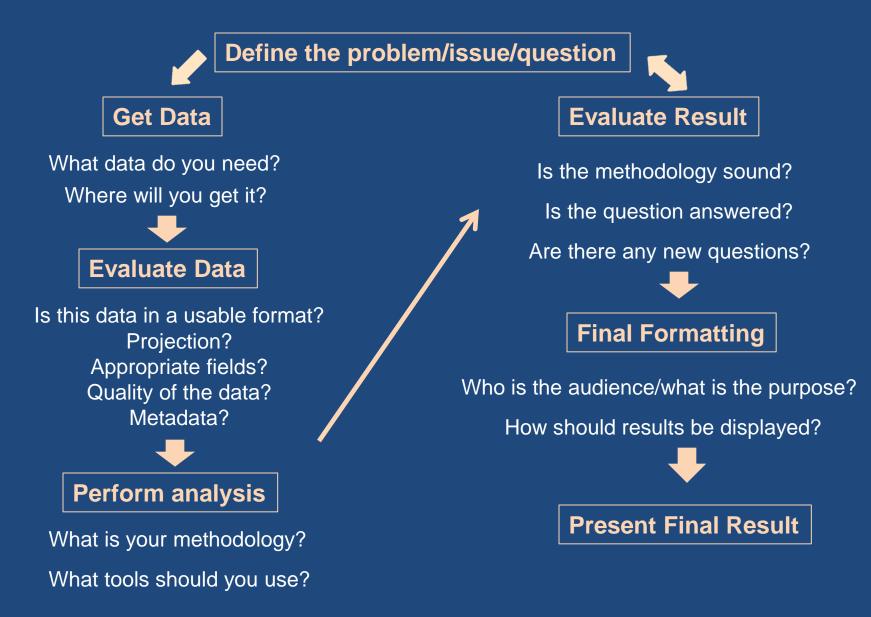
More on Cells

Zones


 formed by two or more cells with the same value (connected or disconnected)

Zone 1 consists of 7 cells

Regions

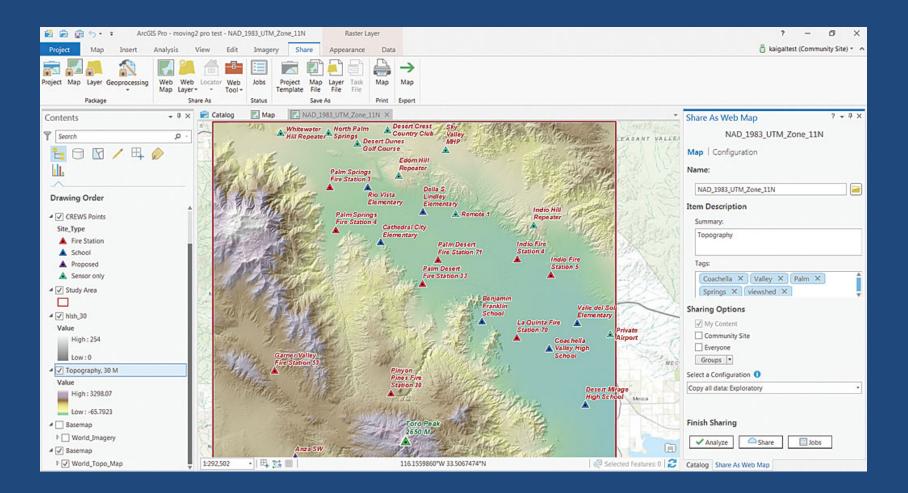

• group of connected cells in a zone

Zone 1 has 2 regions

GIS Process

GIS Analysis - A Process

GIS is just a tool


• Quality of your data

• Quality of your modeling process

• Quality of your analysis

• Aesthetics

ArcGIS Pro

Let's Go!

ArcGIS Exercises

lib.umd.edu/gis/workshops